Electrically controlled transfer of spin angular momentum of light in an optically active medium.
نویسندگان
چکیده
Spin is an intrinsic property of the photon. A method for using an externally applied dc electric field to manipulate the transfer of spin angular momentum of light in an optically active medium is presented. To discuss this, we first develop a wave coupling theory of the mutual action of natural optical activity and the linear electro-optic effect. Besides being used for analyzing the electrically controlled transfer of spin angular momentum of light, the theory can also be used to describe the propagation of light traveling along an arbitrary direction in any optically active medium with an external dc electric field along an arbitrary direction.
منابع مشابه
Chemical reaction and thermal radiation effects on MHD micropolar fluid past a stretching sheet embedded in a non-Darcian porous medium
The paper aims at investigating the effects of chemical reaction and thermal radiation on the steady two-dimensional laminar flow of viscous incompressible electrically conducting micropolar fluid past a stretching surface embedded in a non-Darcian porous medium. The radiative heat flux is assumed to follow Rosseland approximation. The governing equations of momentum, angular momentum, energy, ...
متن کاملMechanical equivalence of spin and orbital angular momentum of light: an optical spanner.
We use a Laguerre-Gaussian laser mode within an optical tweezers arrangement to demonstrate the transfer of the orbital angular momentum of a laser mode to a trapped particle. The particle is optically confined in three dimensions and can be made to rotate; thus the apparatus is an optical spanner. We show that the spin angular momentum of +/-?per photon associated with circularly polarized lig...
متن کاملOptical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media.
We demonstrate experimentally an optical process in which the spin angular momentum carried by a circularly polarized light beam is converted into orbital angular momentum, leading to the generation of helical modes with a wave-front helicity controlled by the input polarization. This phenomenon requires the interaction of light with matter that is both optically inhomogeneous and anisotropic. ...
متن کاملSpin-induced angular momentum switching.
When light is transmitted through optically inhomogeneous and anisotropic media the spatial distribution of light can be modified according to its input polarization state. A complete analysis of this process, based on the paraxial approximation, is presented, and we show how it can be exploited to produce a spin-controlled change in the orbital angular momentum of light beams propagating in pa...
متن کاملOptical spin transfer and spin-orbit torques in thin film ferromagnets.
We study the optically induced torques in thin film ferromagnetic layers under excitation by circularly polarized light. We study cases both with and without Rashba spin-orbit coupling using a 4-band model. In the absence of Rashba spin-orbit coupling, we derive an analytic expression for the optical torques, revealing the conditions under which the torque is mostly derived from optical spin tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics letters
دوره 31 23 شماره
صفحات -
تاریخ انتشار 2006